
© 2010 Bennett, McRobb and Farmer

Refining the Requirements
Model

Based on Chapter 8 of Bennett,
McRobb and Farmer:

Object Oriented Systems Analysis and
Design Using UML, (4th Edition),

McGraw Hill, 2010.

2© 2010 Bennett, McRobb and Farmer

In This Lecture You Will Learn:

• About reuse in software development;
• How OO contributes to reuse;
• How to identify and model aggregation,

composition and generalization;
• An approach to modelling components;
• About ‘patterns’ in software development;
• How analysis patterns help to structure a

model.

© 2010 Bennett, McRobb and Farmer

• Software development has concentrated
on inventing new solutions

• Recently, the emphasis has shifted

• Much software is now assembled from
components that already exist

• Component reuse can save money, time
and effort

Reuse in Software Development

© 2010 Bennett, McRobb and Farmer

Reuse in Software Development

• Achieving reuse is still hard
– Reuse is not always appropriate – can’t

assume an existing component meets a new
need

– Poor model organisation makes it hard to
identify suitable components

– The NIH (Not-Invented-Here) syndrome

– Requirements and designs are more difficult
to reuse than code

© 2010 Bennett, McRobb and Farmer

Reuse: The Contribution of OO

• Generalization allows the creation of new
specialised classes when needed

• Encapsulation makes components easier
to use in systems for which they were not
originally designed

• Aggregation and composition can be used
to encapsulate components

© 2010 Bennett, McRobb and Farmer

Adding Generalization Structure

• Add generalization structures when:
– Two classes are similar in most details,

but differ in some respects

– May differ:
• In behaviour (operations or methods)

• In data (attributes)

• In associations with other classes

© 2010 Bennett, McRobb and Farmer

Adding Structure

• Two types of staff:

Have qualifications recorded
Can be client contact for campaign
Bonus based on campaigns they
have worked on

Creative

Admin
Qualifications are not recorded
Not associated with campaigns
Bonus not based on campaign profits

© 2010 Bennett, McRobb and Farmer

Adding Structure:

0..*1..* allocated

Superclass
associations are

inherited by
subclasses

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

Grade

gradeName

AdminStaff

calculateBonus ()

A superclass

Two subclasses with
redefined operation
calculateBonus ()

© 2010 Bennett, McRobb and Farmer

Aggregation and Composition

• Special types of association, both
sometimes called whole-part

• A campaign is made up of adverts:

Campaign Advert0..*1

Unfilled diamond
signifies aggregation

© 2010 Bennett, McRobb and Farmer

• Aggregation is essentially any whole-part
relationship

• Semantics can be very imprecise

• Composition is ‘stronger’:
– Each part may belong to only one whole at a

time

– When the whole is destroyed, so are all its
parts

Aggregation and Composition

© 2010 Bennett, McRobb and Farmer

• An everyday example:

• Clearly not composition:
– Students could be in several classes

– If class is cancelled, students are not
destroyed!

Class Student0..*1..*

Aggregation and Composition

© 2010 Bennett, McRobb and Farmer

• Another everyday example:

Meal Ingredient1..*1

Filled diamond signifies composition

Aggregation and Composition

• This is (probably) composition:
– Ingredient is in only one meal at a time
– If you drop your dinner on the floor, you

probably lose the ingredients too

© 2010 Bennett, McRobb and Farmer

• Standard UML techniques can be used to
model components

• Component internals can be detailed in a
class diagram

• Component interaction can be shown in a
communication diagram

Modelling Components in UML

© 2010 Bennett, McRobb and Farmer

Modelling Components in UML

• UML has icons for modelling components in
structure diagrams (e.g. class diagrams)

« component »
Payments

TakePayment

« component »
Bookings

Provided interface offers services Required interface uses services

Ball-and-socket connector maps provided interface
of one component to required interface of another

© 2010 Bennett, McRobb and Farmer

Modelling Components in UML

• Structure diagrams can mix component
icons with other icons, e.g. interfaces

«interface»
AllocateSeats

getFreeSeats(seatType)

allocateSeat(seatRef)

deallocateSeat(seatRef)

Flight Management

«component» «realize»

© 2010 Bennett, McRobb and Farmer

Software Development Patterns

A pattern:
• “describes a problem which occurs over

and over again in our environment, and
then describes the core of a solution to
that problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way twice.”

Alexander et al. (1977)

© 2010 Bennett, McRobb and Farmer

Software Development Patterns

• A pattern has:
– A context = a set of circumstances or

preconditions for the problem to occur

– Forces = the issues that must be addressed

– A software configuration that resolves the
forces

© 2010 Bennett, McRobb and Farmer

Software Development Patterns

• Patterns are found at many points in the
systems development lifecycle:
– Analysis patterns are groups of concepts

useful in modelling requirements

– Architectural patterns describe the structure of
major components of a software system

– Design patterns describe the structure and
interaction of smaller software components

© 2010 Bennett, McRobb and Farmer

Software Development Patterns

• Patterns have been applied widely in
software development:
– Organisation patterns describe structures,

roles and interactions in the software
development organisation itself

• Antipatterns document bad practice
– Mushroom Management is an organisation

anti-pattern

© 2010 Bennett, McRobb and Farmer

Simplest Analysis Pattern

Transaction

transactionNumber
transactionDate
transactionTotal

updateTransactionTotal ()

TransactionLineItem

transactionLineNumber
transactionLineQuantity
transactionLineValue

comprises

*1

© 2010 Bennett, McRobb and Farmer

Accountability Analysis Pattern

AccountabilityType

Accountability

Time Period

Party

Person

Organization

commissioner

responsible

* *

*

1

1

1

*

1

© 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned about:

• How to identify and model aggregation,
composition and generalization

• Reusable components, and how to model
them in structure diagrams

• What is meant by ‘pattern’, and how
patterns are used in software development

© 2010 Bennett, McRobb and Farmer

References

• Bennett, McRobb and Farmer (2010)

• Cheesman and Daniels (2001)
(For full bibliographic details, see Bennett,
McRobb and Farmer)

