Object Oriented Systems Analysis and Design Using UML T

Simon Bennett, Steve McRobb and Ray Farmer = .
m_ﬂ

Refining the Requirements
Model

Based on Chapter 8 of Bennett,
McRobb and Farmer:

Object Oriented Systems Analysis and
Design Using UML, (4th Edition),
McGraw Hill, 2010.

% Education © 2010 Bennett, McRobb and Farmer

In This Lecture You WIll Learn:

« About reuse in software development;

« How OO contributes to reuse;

* How to identify and model aggregation,
composition and generalization;

 An approach to modelling components;

* About ‘patterns’ in software development;

 How analysis patterns help to structure a
model.

% Education © 2010 Bennett, McRobb and Farmer 2

Reuse in Software Development

» Software development has concentrated
on inventing new solutions

* Recently, the emphasis has shifted

 Much software is now assembled from
components that already exist

« Component reuse can save money, time
and effort

% Education © 2010 Bennett, McRobb and Farmer

Reuse in Software Development

* Achieving reuse is still hard

— Reuse is not always appropriate — can't
assume an existing component meets a new
need

— Poor model organisation makes it hard to
identify suitable components

— The NIH (Not-Invented-Here) syndrome

— Requirements and designs are more difficult
to reuse than code

% Education © 2010 Bennett, McRobb and Farmer

Reuse: The Contribution of OO

 Generalization allows the creation of new
specialised classes when needed

* Encapsulation makes components easier
to use in systems for which they were not
originally designed

» Aggregation and composition can be used
to encapsulate components

% Education © 2010 Bennett, McRobb and Farmer

Adding Generalization Structure

* Add generalization structures when:

— Two classes are similar in most details,
but differ in some respects

—May differ:

* In behaviour (operations or methods)
* |[n data (attributes)

* |n associations with other classes

% Education © 2010 Bennett, McRobb and Farmer

Adding Structure

* Two types of staff:

Have qualifications recorded
Can be client contact for campaign

Creative
Bonus based on campaigns they
have worked on
Qualifications are not recorded
Admin | Not associated with campaigns

Bonus not based on campaign profits

© 2010 Bennett, McRobb and Farmer

Adding Structure:

DR A superclass

StaffMember
{abstract}
Grade 1. < allocated 0.* | staffName
staffNo
gradeName P staffStartDate
g calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()
Superclass
associations are
inherited by
subclasses

AdminStaff

calculateBonus ()

© 2010 Bennett, McRobb and Farmer

Two subclasses with
redefined operation
calculateBonus ()

CreativeStaff

qualification

calculateBonus ()
assignStaffContact ()

Aggregation and Composition

» Special types of association, both
sometimes called whole-part

* A campaign is made up of adverts:

Campaign 01 0. Advert

Unfilled diamond
signifies aggregation

% Education © 2010 Bennett, McRobb and Farmer

Aggregation and Composition
* Aggregation is essentially any whole-part
relationship
* Semantics can be very imprecise
» Composition is ‘stronger’:
— Each part may belong to only one whole at a
time
— When the whole is destroyed, so are all its
parts

% Education © 2010 Bennett, McRobb and Farmer

Aggregation and Composition

* An everyday example:

Class 01..* 0.* Student

» Clearly not composition:
— Students could be in several classes

— If class is cancelled, students are not
destroyed!

% Education © 2010 Bennett, McRobb and Farmer

Aggregation and Composition

* Another everyday example:

Meal ’1 1.* Ingredient

N
\
\

Filled diamond signifies composition

* This is (probably) composition:
— Ingredient is in only one meal at a time

— If you drop your dinner on the floor, you
orobably lose the ingredients too

% Education © 2010 Bennett, McRobb and Farmer

Modelling Components in UML

« Standard UML techniques can be used to
model components

 Component internals can be detailed in a
class diagram

 Component interaction can be shown in a
communication diagram

% Education © 2010 Bennett, McRobb and Farmer

Modelling Components in UML

* UML has icons for modelling components in
structure diagrams (e.g. class diagrams)

Provided interface offers services Required interface uses services
N 7

N 7/
N

Ve
S ’
« component » g ‘@‘ « component » g
72

Payments Bookings

TakePayment =~ _

~
~

Ball-and-socket connector maps provided interface
of one component to required interface of another

% Education © 2010 Bennett, McRobb and Farmer

Modelling Components in UML

» Structure diagrams can mix component
icons with other icons, e.g. interfaces

«component»
Flight Management

«interface»
AllocateSeats

«realizey»

——————— > getFreeSeats(seatType)
allocateSeat(seatRef)

deallocateSeat(seatRef)

© 2010 Bennett, McRobb and Farmer

Software Development Patterns

A pattern:

» “describes a problem which occurs over
and over again in our environment, and
then describes the core of a solution to
that problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way twice.”

Alexander et al. (1977)

% Education © 2010 Bennett, McRobb and Farmer

Software Development Patterns

* A pattern has:

— A context = a set of circumstances or
preconditions for the problem to occur

— Forces = the issues that must be addressed

— A software configuration that resolves the
forces

% Education © 2010 Bennett, McRobb and Farmer

Software Development Patterns

Patterns are found at many points in the
systems development lifecycle:

— Analysis patterns are groups of concepts
useful in modelling requirements

— Architectural patterns describe the structure of
major components of a software system

— Design patterns describe the structure and
interaction of smaller software components

% Education © 2010 Bennett, McRobb and Farmer

Software Development Patterns

Patterns have been applied widely in
software development:

— Organisation patterns describe structures,
roles and interactions in the software
development organisation itself

Antipatterns document bad practice

— Mushroom Management is an organisation
anti-pattern

% Education © 2010 Bennett, McRobb and Farmer

Simplest Analysis Pattern

Transaction

transactionNumber
transactionDate

transactionTotal

comprises B

TransactionLineltem

updateTransactionTotal ()

© 2010 Bennett, McRobb and Farmer

*

transactionLineNumber
transactionLineQuantity
transactionLineValue

Accountability Analysis Pattern

AccountabilityType

1

commissioner b
Person

* * 1

Accountability Party
1 * 1 v\

responsible P>

Organization

*

Time Period

% Education © 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned about:

* How to identify and model aggregation,
composition and generalization

* Reusable components, and how to model
them in structure diagrams

* What is meant by ‘pattern’, and how
patterns are used in software development

% Education © 2010 Bennett, McRobb and Farmer

References

» Bennett, McRobb and Farmer (2010)

* Cheesman and Daniels (2001)

(For full bibliographic details, see Bennett,
McRobb and Farmer)

% Education © 2010 Bennett, McRobb and Farmer

